Exercice A2

Partie I: Étude d'une fonction auxiliaire

1°) On sait que
$$\lim_{x \to -\infty} (x^2 - 2x + 2) = \lim_{x \to -\infty} x^2 = +\infty$$
 et $\lim_{x \to -\infty} e^{-x} = \lim_{x \to +\infty} e^{X} = +\infty$

Donc
$$\lim_{x \to -\infty} (x^2 - 2x + 2)e^{-x} = +\infty$$
 et $\lim_{x \to -\infty} 1 - (x^2 - 2x + 2)e^{-x} = -\infty$ donc $\lim_{x \to -\infty} g(x) = -\infty$

D'autre part, lorsque $x \neq 0$, on peut écrire $g(x) = 1 - x^2 \left(1 - \frac{2}{x} + \frac{2}{x^2}\right) e^{-x}$

On sait que
$$\lim_{x \to +\infty} x^2 e^{-x} = 0$$
, et $\lim_{x \to +\infty} \left(1 - \frac{2}{x} + \frac{2}{x^2} \right) = 1$ donc $\lim_{x \to +\infty} x^2 \left(1 - \frac{2}{x} + \frac{2}{x^2} \right) e^{-x} = 0$

Donc
$$\lim_{x \to +\infty} 1 - x^2 \left(1 - \frac{2}{x} + \frac{2}{x^2}\right) e^{-x} = 1$$
 donc $\lim_{x \to +\infty} g(x) = 1$.

2°)
$$g$$
 est définie sur IR par $g(x) = 1 - (x^2 - 2x + 2)e^{-x}$

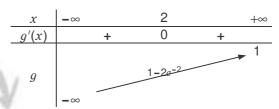
$$g$$
 est donc somme, produit et composée de fonctions dérivables sur IR, donc g est dérivable sur IR. $g'(x) = 0 - \left[(2x - 2)e^{-x} + (x^2 - 2x + 2)(-e^{-x}) \right] = (-2x + 2 + x^2 - 2x + 2)e^{-x} = (x^2 - 4x + 4)e^{-x}$ donc $g'(x) = (x - 2)^2 e^{-x}$ pour tout $x \in \mathbb{R}$

La fonction exponentielle étant strictement positive, on en déduit que $|g'(x)| \ge 0$ pour tout $x \in \mathbb{R}$

3°) q' étant positive sur IR et ne s'annulant qu'en 2, on en déduit que la fonction q est strictement croissante sur $]-\infty$; 2] et sur $[2; +\infty[$, donc : g est strictement croissante sur [R].

De plus la fonction g est dérivable sur IR, donc elle est continue sur IR.

On peut donner le tableau de variations de q: on a $q(2) = 1 - 2e^{-2} \approx 0.73$



4°) q est une fonction définie, continue et strictement croissante sur IR.

Donc g est une bijection de IR sur $\lim_{x \to -\infty} g(x)$; $\lim_{x \to +\infty} g(x) = -\infty$; 1[.

On en déduit que pour tout $k \in]-\infty$; 1[, l'équation g(x) = k a une solution unique dans IR.

Comme $0 \in]-\infty$: 1[[l'équation g(x) = k] a une solution unique dans IR.

Comme $0 \in]-\infty$; 1[, l'équation g(x) = 0 a, dans IR, une solution unique α

On sait que g(2) > 0 et g(0) = 1 - 2 = -1 donc g(0) < 0

La fonction g étant strictement croissante, α appartient donc à l'intervalle]0; 2[

Par balayages successifs, on obtient avec une calculatrice : $0.3 < \alpha < 0.4$ puis $0.35 < \alpha < 0.36$

En effet $g(0,35) \approx -0,0024$ et $g(0,36) \approx 0,1656$ donc $g(0,35) < g(\alpha) < g(0,36)$

 5°) g étant strictement croissante sur IR, on en déduit que :

pour tout $x \in]-\infty$; $\alpha[g(x) < g(\alpha), donc | g(x) < 0 pour tout <math>x \in]-\infty$; $\alpha[g(x) < g(\alpha), donc | g(x) < 0 pour tout <math>x \in]-\infty$; $\alpha[g(x) < g(\alpha), donc | g(x) < 0 pour tout <math>x \in]-\infty$; $\alpha[g(x) < g(\alpha), donc | g(x) < 0 pour tout <math>x \in]-\infty$; $\alpha[g(x) < g(\alpha), donc | g(x) < 0 pour tout <math>x \in]-\infty$; $\alpha[g(x) < g(\alpha), donc | g(x) < 0 pour tout <math>x \in]-\infty$; $\alpha[g(x) < g(\alpha), donc | g(x) < 0 pour tout <math>x \in]-\infty$; $\alpha[g(x) < g(\alpha), donc | g(x) < 0 pour tout <math>x \in]-\infty$; $\alpha[g(x) < g(\alpha), donc | g(x) < 0 pour tout <math>x \in]-\infty$; $\alpha[g(x) < g(\alpha), donc | g(x) < 0 pour tout <math>x \in]-\infty$; $\alpha[g(x) < g(\alpha), donc | g(x) < 0 pour tout <math>x \in]-\infty$; $\alpha[g(x) < g(\alpha), donc | g(x) < 0 pour tout <math>x \in]-\infty$; $\alpha[g(x) < g(\alpha), donc | g(x) < 0 pour tout <math>x \in]-\infty$; $\alpha[g(x) < g(\alpha), donc | g(x) < 0 pour tout <math>x \in]-\infty$; $\alpha[g(x) < g(\alpha), donc | g(x) < 0 pour tout <math>x \in]-\infty$;

pour tout $x \in]\alpha$; $+\infty[$ $g(x) > g(\alpha)$, donc g(x) > 0 pour tout $x \in [\alpha]$; $+\infty[$

et $g(\alpha) = 0$

Partie II : Étude de f

f est définie sur IR par $f(x) = x - 1 + (x^2 + 2)e^{-x}$

1°) Pour $x \neq 0$, on peut écrire $f(x) = x \left(1 - \frac{1}{x} + \left(x + \frac{2}{x}\right)e^{-x}\right)$

On a
$$\lim_{x \to -\infty} x + \frac{2}{x} = -\infty$$
 $\lim_{x \to -\infty} e^{-x} = \lim_{x \to +\infty} e^{x} = +\infty$ donc $\lim_{x \to -\infty} \left(x + \frac{2}{x} \right) e^{-x} = -\infty$.

De plus
$$\lim_{x \to -\infty} 1 - \frac{1}{x} = 1$$
, donc $\lim_{x \to -\infty} \left(1 - \frac{1}{x} + \left(x + \frac{2}{x}\right)e^{-x}\right) = -\infty$ et $\lim_{x \to -\infty} x \left(1 - \frac{1}{x} + \left(x + \frac{2}{x}\right)e^{-x}\right) = +\infty$

c'est-à-dire
$$\lim_{x \to -\infty} f(x) = +\infty$$

Pour tout réel x on peut écrire $f(x) = x - 1 + x^2 e^{-x} + 2e^{-x}$

On sait que
$$\lim_{x \to +\infty} x - 1 = +\infty$$
; $\lim_{x \to +\infty} e^{-x} = 0$ et on admet que $\lim_{x \to +\infty} x^2 e^{-x} = 0$.

On en déduit alors par somme que $\lim_{x \to +\infty} f(x) = +\infty$.

On en déduit alors par somme que
$$\lim_{x \to +\infty} f(x) = +\infty$$

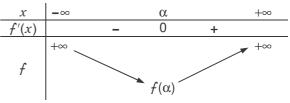
 2°) f est la somme, le produit et la composée de fonctions dérivables sur IR, donc f est dérivable sur IR et :

$$f'(x) = 1 + 2xe^{-x} + (x^2 + 2)(-e^{-x}) = 1 - (x^2 - 2x + 2)e^{-x}$$
 donc $f'(x) = g(x)$ pour tout $x \in \mathbb{R}$

3°) En utilisant le signe de la fonction g déterminé dans la partie I, on en déduit que :

f est strictement décroissante sur $]-\infty$; α et strictement croissante sur $\lceil \alpha \mid +\infty \rceil$.

On peut alors donner le tableau de variation de f:



4°) On a
$$f(\alpha) = \alpha - 1 + (\alpha^2 + 2)e^{-\alpha}$$

Mais on sait que α est la solution de l'équation $g(\alpha) = 0$.

On a donc
$$1 - (\alpha^2 - 2\alpha + 2)e^{-\alpha} = 0$$

c'est-à-dire 1 –
$$(\alpha^2 + 2)e^{-\alpha} + 2\alpha e^{-\alpha} = 0$$

donc
$$(\alpha^2 + 2)e^{-\alpha} = 1 + 2\alpha e^{-\alpha}$$

On en déduit alors
$$f(\alpha) = \alpha - 1 + 1 + 2\alpha e^{-\alpha} = \alpha + 2\alpha e^{-\alpha}$$
 donc $f(\alpha) = \alpha(1 + 2e^{-\alpha})$

5°) Pour tout
$$x \in \mathbb{R}$$
, on a $f(x) - (x - 1) = (x^2 + 2)e^{-x} = x^2e^{-x} + 2e^{-x}$.

On sait que
$$\lim_{x \to +\infty} e^{-x} = 0$$
 et on admet que $\lim_{x \to +\infty} x^2 e^{-x} = 0$.

On en déduit donc que
$$\lim_{x \to +\infty} f(x) - (x - 1) = 0$$

free.fr La droite d'équation y = x - 1 est donc asymptote oblique à (C) au voisinage de $+\infty$

Pour tout réel x, on a
$$f(x) - (x - 1) = (x^2 + 2)e^{-x}$$
.

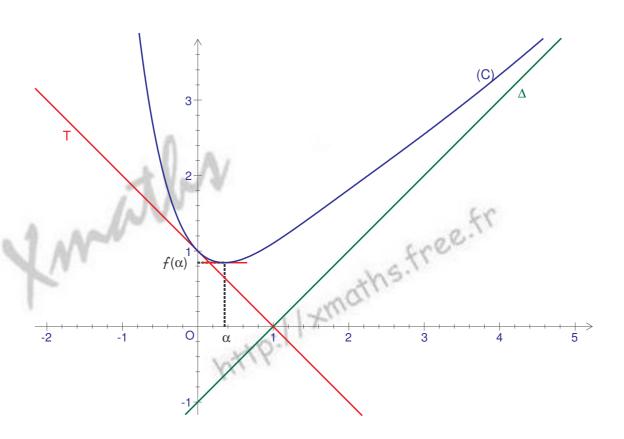
On sait que x^2+2 et e^{-x} sont strictement positifs, on en déduit donc que f(x) > x-1 pour tout $x \in \mathbb{R}$. La courbe (C) se trouve donc au dessus de Δ

6°) La tangente T à (C) au point d'abscisse 0 a pour équation : y = f'(0)(x - 0) + f(0)

On a
$$f'(0) = g(0) = -1$$
 et $f(0) = -1 + 2e^0 = -1 + 2 = 1$

Donc (T) a pour équation
$$y = -x + 1$$

7°) Une calculatrice permet d'obtenir une valeur approchée de $f(\alpha)$: $f(\alpha) \approx 0.85$. La courbe (C) a, au point d'abscisse α , une tangente horizontale.



Annexe

Pour démontrer que $\lim_{x \to +\infty} x^2 e^{-x} = 0$, on peut écrire :

$$x^{2} e^{-x} = 4 \frac{x^{2}}{4} \left(e^{-\frac{x}{2}} \right)^{2} = 4 \left(\frac{x}{2} e^{-\frac{x}{2}} \right)^{2}$$

On sait que $\lim_{X \to +\infty} X e^{-X} = 0$ donc $\lim_{x \to +\infty} \left(\frac{x}{2} e^{-\frac{x}{2}} \right)$

On en déduit $\lim_{x \to +\infty} 4\left(\frac{x}{2}e^{-\frac{x^2}{2}}\right)^2 = 0$ donc $\lim_{x \to +\infty} x^2 e^{-x} = 0$

is.free.fr $\inf^{x}: \quad \lim_{x \to +\infty} x^{n} e^{-x} = 0$ D'une manière similaire, on pourrait démontrer que pour tout $n \in \mathbb{N}^*$: